Wikipedia
Search Wikipedia:

Latest topics
» Catalysis and its importance in chemical industry
Thu Nov 09, 2017 5:06 am by bejoy

» Cracking: Breaking up larger molecules
Thu Nov 09, 2017 5:05 am by bejoy

» What is Alkylation?
Fri Nov 03, 2017 12:35 am by bejoy

» An Ultimate Guide on Diamond
Thu Nov 02, 2017 2:15 am by bejoy

» Chemistry Running Behind Anger
Mon Oct 30, 2017 12:31 am by bejoy

» The Discovery of Four New Elements in the Periodic Table
Wed Oct 25, 2017 1:23 am by bejoy

» Carbonic Acid: Occurrence, Preparation, Properties and Uses
Mon Oct 23, 2017 1:39 am by bejoy

» Manufacturing of alumina through Bayer process
Tue Oct 17, 2017 1:16 am by bejoy

» Lithium batteries to run at ultra-low temperatures
Thu Oct 12, 2017 12:54 am by bejoy

November 2017
MonTueWedThuFriSatSun
  12345
6789101112
13141516171819
20212223242526
27282930   

Calendar Calendar

Free Hit Counter

Bio-based p-Xylene oxidation into terephthalic acid by engineered E.coli

View previous topic View next topic Go down

Bio-based p-Xylene oxidation into terephthalic acid by engineered E.coli

Post  bejoy on Fri Jul 21, 2017 1:51 am

KAIST researchers have established an efficient biocatalytic system to produce terephthalic acid (TPA) from p-xylene (pX). It will allow this industrially important bulk chemical to be made available in a more environmentally-friendly manner.

The research team developed metabolically engineered Escherichia coli (E.coli) to biologically transform pX into TPA, a chemical necessary in the manufacturing of polyethylene terephthalate (PET). This biocatalysis system represents a greener and more efficient alternative to the traditional chemical methods for TPA production. This research, headed by distinguished professor Sang Yup Lee, was published in Nature Communications.

The research team utilised a metabolic engineering and synthetic biology approach to develop a recombinant microorganism that can oxidise pX into TPA using microbial fermentation. TPA is a globally important chemical commodity for manufacturing PET. It can be applied to manufacture plastic bottles, clothing fibres, films, and many other products. Currently, TPA is produced from pX oxidation through an industrially well-known chemical process (with a typical TPA yield of over 95 mol percent), which shows, however, such drawbacks as intensive energy requirements at high temperatures and pressure, usage of heavy metal catalysts, and the unavoidable byproduct formation of 4-carboxybenzaldehyde.

The research team designed and constructed a synthetic metabolic pathway by incorporating the upper xylene degradation pathway of Pseudomonas putida F1 and the lower p-toluene sulfonate pathway of Comamonas testosteroni T-2, which successfully produced TPA from pX in small-scale cultures, with the formation of p-toluate (pTA) as the major byproduct. The team further optimised the pathway gene expression levels by using a synthetic biology toolkit, which gave the final engineered E.coli strain showing increased TPA production and the complete elimination of the byproduct.

Read more: https://goo.gl/bzTjb5

bejoy

Posts : 197
Join date : 2013-12-10

View user profile

Back to top Go down

View previous topic View next topic Back to top

- Similar topics

 
Permissions in this forum:
You cannot reply to topics in this forum